

(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

Department of Electrical and Electronics

Number of programmes where syllabus revision was carried out

SL. NO.	COURSE CODE	COURSE OFFERED
1	SEE1401	Power System Protection and Switch Gear
2	SEE5102	Analysis of Inverters

SEE1401

POWER SYSTEM PROTECTION AND SWITCHGEAR

L	T	P Credits		Total Marks	
3	0	0	3	100	

COURSE OBJECTIVES

To discuss the cause and effect of abnormal operating conditions in a Power system and the protective schemes along with the problems associated with circuit interruptions.

UNIT 1 INTRODUCTION DRIVES

8 Hrs.

Essential requirements of protection - nature and causes of faults - types of faults - effects of faults - zones of protection - protection schemes - CTs and PTs and their applications - Basic relay terminology.

UNIT 2 PROTECTIVE RELAYS

10 Hrs.

Electromagnetic relays - operating principle - torque equation - relay characteristics - over current relay, directional relay, distance relay, differential relay, negative sequence relay, amplitude and phase comparator of over current static relays, duality between comparators. Microprocessor based over current relay.

UNIT 3 APPARATUS PROTECTION

9 Hrs.

Protection of Generator- stator & rotor protection - Large Motor protection. Transformer protection - Bus bar Protection - Transmission line protection.

UNIT 4 THEORY OF ARC QUENCHING

9 Hrs.

Arcing phenomena - theory and methods of arc quenching - recovery voltage - restriking voltage - RRRV - Resistance switching - current chopping - capacitive current breaking - Characteristics of fuses - HRC fuse.

UNIT 5 CIRCUIT BREAKERS

9 Hrs.

Classification of circuit breakers - air circuit breakers - oil circuit breakers - vacuum circuit breaker - SF6 circuit Breakers - selection of circuit breakers - rating of circuit breakers - testing of circuit breakers.

Max. 45 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Categorize various faults, their effects on power system and need of protection.
- CO2 Analyze the various electromagnetic and static relay used in power system.
- CO3 Design appropriate relay for various power system apparatus
- CO4 Investigate various Arc quenching technique for power system protection
- CO5 Evaluate the effectiveness of various circuit breakers with respect to Arc quenching
- CO6 Examine the characteristics, rating and testing of circuit breakers

TEXT / REFERENCE BOOKS

- 1. Sunil S.Rao "Switchgear and protection", Khanna publishers, New Delhi, 2008.
- 2. Badri Ram and D.N.Vishwakarma "Power System Protection and Switchgear", Tata McGraw Hill publishing, New Delhi, 2005.
- 3. S.L.Uppal, "Electrical Power", Khanna publishers, New Delhi, 1995.
- 4. Soni, Gupta and Bhatnagar "A Course in Electrical power", Dhanpat Rai&sons, New Delhi, 2010.
- 5. TSM Rao, "Digital Numerical Relays", Tata McGraw Hill publishing, New Delhi, 2005.
- B.Ravindranath and N.Chander, "Power System Protection and Switchgear", New age International (P) Ltd, 2005.
- 7. Dr.N. Veerappan and Dr.S.R.KrishnaMurthy, "Power System Switchgear and Protection", S.Chand, 2009.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 80 Exam Duration: 3 Hrs.

PART A: 10 questions of 2 marks each - No choice
PART B: 2 questions from each unit of internal choice, each carrying 12 marks

20 Marks 60 Marks

SEE5102	ANALYSIS OF INVERTERS	L	T	Р	Credits	Total Marks
		4	0	0	4	100

COURSE OBJECTIVES

- Ability to analyse and comprehend the various operating modes of different configurations of power converters
- Ability to design different single phase and three phase inverters.

UNIT 1 SINGLE PHASE INVERTER

12 Hrs.

Introduction – Principle of operation – Performance parameters – Single phase half bridge Inverters – Single phase full bridge Inverter – Single phase Series Inverter – Single phase parallel Inverter - Modified McMurray Inverter – McMurray Bedford half bridge and full Inverter Voltage control of single phase Inverters

UNIT 2 VOLTAGE SOURCE AND CURRENT SOURCE INVERTER

12 Hrs.

Three phase bridge Inverter with 180° and 120° mode of operation – Voltage control of three phase Inverters - Analysis of single phase and three phase auto sequential current source Inverter - Current source bridge Inverter—Harmonic Elimination Techniques.

UNIT 3 Z-SOURCEINVERTER

12 Hrs.

Comparison with VSI and CSI-Equivalent circuit and operation –Circuit analysis and calculation. Introduction to Quasi Z- source inverter-basic topology-Extended boost quasi Z- source inverter topologies

UNIT 4 RESONANT PULSE INVERTERS

12 Hrs.

Introduction – Series resonant Inverters with unidirectional and Bidirectional switches – Parallel resonant Inverters– Class E resonant Inverter - Zero current switching resonant converter – Zero voltage switching resonant converter – Two quadrant ZVS resonant converter – Resonant DC link Inverter.

UNIT 5 MULTILEVEL INVERTER

12 Hrs.

Multilevel concept – Diode clamped – Flying capacitor – Cascade type multilevel Inverters - Comparison of multi-level Inverters - Application of multilevel Inverters

Max. 60 Hours

COURSE OUTCOMES

On the completion of the course, student will be able to

- CO1 Understand the Operation of inverter for single phase and three phase circuits
- CO2 Understand how to do the analysis for the inverter for harmonics.
- CO3 Control the inverter output voltage by using the modulation techniques.
- CO4 Design an inverter for a particular application and power level.
- CO5 Understand the need for multi-level inverter and its operation.

TEXT / REFERENCE BOOKS

- 1. Rashid M.H, 'Power Electronics Circuits, Devices & Applications", Pearson Education, 2013.
- 2. P.S.Bimbra, "Power Electronics", Khanna Publishers, 5th Edition, 2014.
- 3. Fang Lin luo, Hong Ye, "Advanced DC/AC Inverters: Applications in Renewable Enegy" CRC press, Taylor and Francis Group, 2013.
- 4. Mohan .N, Undeland & Robbins, "Power Electronics Converters, Application & Design", John Wiley & Sons, Inc, 2nd Edition, Newyork, 2001.
- 5. P.C Sen, "Modern Power Electronics", S.Chand Ltd., 2005.
- 6. Rashid M.H., "Hand book on Power Electronics", Nihar Kularatna, Newnes, 1998.
- 7. M.D. Singh & K.B. Khanchandani, "Power Electronics", Tata Mc Graw Hill Publishing Company Limited, 2nd edition, 3rd reprint 2008.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks: 70 Exam Duration: 3 Hrs..

PART A: 5 questions of 4 marks each – No choice 20 Marks

PART B: 2 questions from each unit of internal choice, each carrying 10 marks

50 Marks

M.E. – PEID 3 REGULATIONS 2015